Computational Vision Psy 5036, Fall 2013 Study Guide

To prepare for the final, you need to read both the lecture notes and the relevant readings.

Definitions of key concepts. You will be asked to write a short paragraph on each concept discussing its definition and relationship to vision. On the exam, you will answer 8 from a selection of 12. 3 points each for a total of 24 points.

Predictive coding shape-from-shading correspondence problem Generalized bas-relief transform aperture problem

Distributed vs. modular representation

Inverse optics

lightness normalization (or anchoring) problem

Perceptual "explaining away"

gradient descent

slant/tilt

subjective contours

Bayes net

intersection of constraints

motion parallax specular reflection

motion field vs. optic flow homogeneous coordinates structure-from-motion gradient space (p,q) Lightness/reflectance

lambertian

random dot stereogram

accidental view and generic view

motion gradient constraint contrast normalization

pictorial cues

"features of intermediate complexity"

Long essay questions. On the exam, you will be asked to answer 2 questions. 12 points each for a total of 24 points for this section.

- 1. Sketch the connections between V1, V2, V4, MT, MST. Then pick one of these visual cortical areas and describe its properties and discuss its possible function(s).
- 2. Explain how the motion gradient constraint could be represented in terms of spatio-temporal neural receptive fields.
- 3. Discuss an algorithm for the computation of lightness. What are the limitations of spatial filter-type models for lightness?
- 4. Can all the parameters of the eye or camera's movement in a rigid environment be recovered from the motion field? Explain. Describe one method for recovering the translational component of camera motion from optic flow to determine direction of heading.
- 5. Describe the Bayesian decision theory approach to visual perception. Discuss its relation to the psychology and neurophysiology of perception.
- 6. Discuss the computational problems of visual object recognition. Explain the difference between "structural description" and image-based (or "exemplar") theories.
 - 7. Summarize and discuss the key points from one of the following papers on your reading list:
 - a) von der Heydt (2003)
 - b) Ullman et al. (2002)
 - c) Serre et al. (2007)
 - d) Weiss et al. (2002)
 - e) DiCarlo et al. (2012))
 - f) Torralba et al. (2006)
 - g) Grill-Spector (2003)
 - h) Heeger and Bergen (1995)
 - i) Doerschner et al. (2011)